Local Linear Wavelet Neural Network and RLS for Usable Speech Classification

نویسندگان

  • Suchismita Sahoo
  • Sushree Sangita Sahoo
چکیده

While operating in a co -channel environment, the accuracy of the speech processing technique degrades. When more than one person is talking at same time, then there occurs the co-channel speech. The objective of usable speech segmentation is identification and extraction of those portions of co-channel speech that are degraded in a negligible range but still needed for various speech processing application like speaker identification. Some features like usable speech measures are extracted from the co-channel signal to differentiate between usable and unusable types of speech. The features are extracted recursively by this new method and variable length segmentation is carried out by making sequential decision on class assignment of LLWNN pattern classifier. The correct classification using this technique is 84.5% whereas the false classification is 15.5%. The result shows that the proposed classifier gives better classification and is robust.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Accurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network

Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...

متن کامل

Arabic vowels recognition based on wavelet average framing linear prediction coding and neural network

In this work, an average framing linear prediction coding (AFLPC) technique for speaker-independent Arabic vowels recognition system was proposed. Usually, linear prediction coding (LPC) has been applied in many speech recognition applications, however, the combination of modified LPC termed AFLPC with wavelet transform (WT) is proposed in this study for vowel recognition. The investigation pro...

متن کامل

Forecasting Stock Market Using Wavelet Transforms and Neural Networks and ARIMA (Case study of price index of Tehran Stock Exchange)

The goal of this research is to predict total stock market index of Tehran Stock Exchange, using the compound method of ARIMA and neural network in order for the active participations of finance market as well as macro decision makers to be able to predict trend of the market. First, the series of price index was decomposed by wavelet transform, then the smooth's series  predicted by using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011